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1. INTRODUCTION

Let G be an open set in the finite z plane and suppose thatf(z) is regular
in G and continuous on its closure G. We denote by aG the frontier of G and
suppose that aG has at least two finite points. We then prove the following.

THEOREM 1. Suppose, with the above assumptions, that there exist
constants a, O·~ a ~ 1, and M > 0 such that

whenever z l' Z 2 belong to aG and, further, that

fez) = o(Jz/)

if a < 1 and

(1.1)

(1.2)

(1.3)

if a = 1, as z ~ 00 in any unbounded component of G. Then (1.1) holds for
every pair ofpoints z l' Z 2 in G.

Further, if (1.1) holds for a fixed Zl E aG and a variable Z2 E aG, then
(1.1) also holds for this z 1 and any z 2 E G.

The functions z and Z2, respectively, show that 0 cannot be replaced by 0
in (1.2) and (1.3), when Gis Izi > 1.
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Hardy and Littlewood proved in [4, p. 427] that if G is the unit disk, then
(1.1) on the boundary implies the same on the closed disk if M is replaced
by CM for some C > 1. Walsh and Sewell [9, Theorem 1.2.7, p. 17; see also
11] extended the result to Jordan domains with C = 1. Pointwise results of
the same kind were obtained by Warschawski [12]. Two other proofs for
C = 1 (0 < a ~ 1) in the unit disk were given by Rubel et al. [8, p. 27 J, based
on HP-theory and the theory of two complex variables. Tamrazov [IOJ
proved this result for bounded functions defined on an open set G such that
oG has positive capacity and either C\G is connected or for every Zo E oG,

lim inf r- 1 cap({z liz - zol ~ r}\G) > 0,
r~O

where cap A denotes the capacity of the set A.
If w(t5)(w(t5)) denotes the modulus of continuity off on G (on oG), results

of the form w(t5) ~ ~(t5) => w(t5) ~ C~(t5) for an absolute constant C have
also been obtained for functions ~(t5) other than ~(t5) = t5"', a> O. Assuming
that G is simply connected and that the conformal mappings from G to D
and D to G, where D is the unit disk, satisfy Holder conditions on the boun­
daries, M. B. Gagua obtained this result for ~(t5) = Ilog t51- P, p >0 [2,3].
Similar, but less general, results were proved earlier by Magnaradze [7 J.
Finally, Tamrazov proved in [10] that w~ ~ implies w ~ C~ (C = 108) for
more general functions ~ in open sets satisfying certain capacity conditions
on the boundary.

2. A PRELIMINARY RESULT

To prove Theorem 1 we need the following generalfsation of a result of
Fuchs [1, Theorem 1].

THEOREM 2. Suppose that u(z) is subharmonic and positive in an open
set G, whose complement contains at least one finite point, and that

lim u(z) ~ 0 (2.1 )

as z approaches any boundary point of G from inside G except the boundary

point' = 00. Write

B(r) = sup u(z),
G n(lzl =r)

1 fI(r)=-
2nr Gn(lzl=r) u(z)tdzl·

(2.2)

(2.3)
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Then there exists /3, such that 0 </3 ~ 00 and

lim B(r) = lim fer) = /3.
'-00 log r '-00 log r

245

(2.4 )

Suppose further that /3 < 00, and that u(z) is harmonic in G and possesses
there a local conjugate v, such that for some a, where 0 <a ~ I, and some
positive Ro

F(z) = zl-a exp(u + iv) (2.5)

remains one valued in G n (I z I>Ro)' Then F(z) has a pole of order p, say,
at (= 00, ( is an isolated boundary point of G and /3 = a +p - 1.

The case a = 1 of this result is a slight extension of Fuchs' Theorem. To
prove Theorem 2, we define u(z) = 0 in the complement of G and deduce
that u(z) is subharmonic and not constant in the plane. It follows from
standard convexity theorems [5, p. 67] that the limits

and /30 = lim f(r)
• '-00 log r

exist and 0 ~ /32 ~ /31 clearly. Also /32 >0 unless u is harmonic in the plane,
and this is impossible since u attains its minimum 0 at a finite boundary
point of G and u is not constant. Again we have, for 0 < r <R [5, p. 127J,

B(r) ~ R + r feR)
R -r

so that for each fixed K > 1 we obtain

/31 = lim B(r) ~ K + 1 lim f(Kr) = K + 1 /30
'-00 log r K - 1 ,-co 10g(Kr) K - 1 .'

i.e., /31 ~/32' Thus /3, =/32 =/3 and this proves (2.4).
Next, if /3 < 00, u(z) has order zero and is finite at the origin so that [5,

p. 155] u(z) has the representation

u(z) = u(O) +flog 11 - zl(1 dl.J(O

in terms of the Riesz mass f.J of u(z). Also if nCr) denotes the total mass in
Izi < r then Jensen's formula [5, p. 127J shows that

fer) = J: net) dtlt + u(O) (2.6)
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so that
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{3 = lim n(r)
r~OCJ

(2.7)

is the Riesz mass of the whole plane. Also since u(z) has order zero it
follows from Heins' extension of Wiman's theorem [6] that

A(r) = inf u(z)
I z I =r

is unbounded as r --4 00. In particular G contains a sequence of circles

Izi = rv ' where R o < r\ < r2 <,..., rv --4 00 as V--4 00.

By hypothesis these circles belong to G, since u = 0 outside G and so G has
only one unbounded component. In view of the maximum principle and (2.1)
G cannot have any bounded components, so that G is connected. Next, (2.6)
shows that for r = rv'

d l·h a .
n(r)=r-I(r)=-2 J r-;-u(re'li)dO

dr n 0 ur

= nv + a,

where nv is an integer, since F(z), given by (2.5), is one valued.
Thus since n(r) is increasing and bounded, nv is constant for large v and

so n(r) is constant and equal to {3 for r > R \, say. Thus there is no Riesz
mass in R \ <Iz I< 00 and so u(z) is harmonic there. Hence F(z) has an
isolated singularity at 00 and since when Iz I= r

then F(z) has a pole at 00 if a < 1. If a = 1 and F(z) is finite at 00, then u(z)
is bounded as z --4 00 and so {3 = 0 in (2.4), which gives a contradiction.
Thus F( 00 ) = 00 in all cases. If p is the order of the pole of F(z) at 00 then

u(z) = (a +p - 1) log Izi + 0(1)

so that {3 = a +p - 1. In particular,

as z --4 00,

U(z) --4 00 as z --4 00,
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so that the complement of G in the open plane is bounded. This completes
the proof of Theorem 2.

We note that Theorem 2 has a converse. If u is harmonic and positive near
00 then there exists a such that 0 < a <1 and F(z) given by (2.5) has a pole
at 00.

We state for future reference a form of Theorem 2 when the exceptional
boundary point ( is finite.

THEOREM 3. Suppose that u(z) is harmonic and positive in an open set
G in the closed plane, whose complement contains at least two points and
that u(z) satisfies (2.1) as z approaches any boundary point of G excluding
one finite boundary point (. Suppose further that u possesses a local
conjugate v, such that

F(z) = (z - oa-I exp(u + iv)

remains regular, i.e., one valued in G (1 (I z - 'I <6), where 6 >a and
a< a <1. Then either

lim Iz - (1 m IF(z)1 = 00 (2.8)

as z ---t (for every positive integer m, or else F(z) has a pole at , and' is an
isolated boundary point of G.

We apply Theorem 2 to u(z) = u(' + Z-I) and deduce Theorem 3.

3. PROOF OF THEOREM 1

Suppose thatf(z) satisfies the hypotheses of Theorem 1. We write for any
ZJ E8G

u(z) = log If(z) - f(z.)I- a log Iz - z.I-Iog M (3.1)

and proceed to show that

u(z) <a in G.

Suppose first that G is bounded. If a = 0 it follows fr.om (1.1) that

lim u(z) <a

(3.2)

(3.3)

as z approaches any boundary point z 2 of G other than z l' and since f(z) is
continuous at z I' (3.3) holds also as z approaches z •. Thus in this case (3.2)
follows at once from the maximum principle, since u(z) is subharmonic in G.
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Assume next that a >°and that (3.2) is false. Let Go be the subset of G in
which u(z) >°and define

uo(Z) = u(z), z EGo,

uo(z) = 0, elsewhere.

(3.4)

(3.5)

Then it follows from (3.3) that uo(z) is subharmonic in the open plane,
except possibly at z" and also at 00, since G is bounded. Also uo(z) is not
constant. Thus uo(z) satisfies the hypotheses for u(z) of Theorem 3, with
, = zI' G = Go and

We deduce that F(z) has a pole at z" which contradicts our assumption that
fez) is continuous at Zl as a function in O. Thus (3.2) holds in all cases if G
is bounded.

Suppose next that G is unbounded. We first apply the result we have just
proved with the domain

instead of G. Then u(z) is bounded above by some positive constant M' on
G n (I z - z II = I), since f(z) is continuous in 0 and so in 0 1 , Thus the
argument we have just given when applied to u(z) - M' in G t shows that

u(z) ~ M' (3.6)

Suppose now again that (3.2) is false. Let Go be the subset of G where
u(z) > 0 and define uo(z) by (3.4) and (3.5). Then uo(z) is subharmonic in
the closed plane except possibly at z = z I and z = 00. However, by (3.6)
uo(z) is bounded above near z l' It now follows [5, p. 237] that uo(z) can be
extended as a subharmonic function to the whole open plane. We now apply
Theorem 2. If 0 ~ a < 1 we deduce from Theorem 2, applied with 1 - a
instead of a, thatf(z)-f(zt) has a pole at 00, which contradicts (1.2). If
a = 1 we deduce from Theorem 2, applied with a = 1, that
(f(z) - f(zl))!(z - Zl) has a pole at 00, which contradicts (1.3). Thus (3.2)
holds in all cases. This proves the last sentence of Theorem 1.

We now take a fixed point z2E G and consider

u(z) = log If(z) -f(z2)1- a log Iz - z21-logM.

Then u(z) is subharmonic in G if we define

when a < 1,

when a = 1.
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Also by what we have just proved, if f(z) satisfies the hypotheses of
Theorem 1, then (3.3) holds as z approaches any finite boundary point of G.
If (3.2) is false we again define uo(z) by (3.4) and (3.5) and apply
Theorem 2. Once again (1.2) or (1.3) leads to a contradiction so that (3.2)
holds in G. Thus (1.1) is proved in all cases.
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